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MONITORING STRUCTURAL CHANGE 

Contemporary tests for structural change deal with detections of the "one-shot" type: 
given an historical data set of fixed size, these tests are designed to detect a structural 
break within the data set. Due to the law of the iterated logarithm, one-shot tests cannot 
be applied to monitor out-of-sample stability each time new data arrive without signalling 
a nonexistent break with probability one. We propose and analyze two real-time monitor- 
ing procedures with controlled size asymptotically: the fluctuation and CUSUM monitor- 
ing procedures. We extend an invariance principle in the sequential testing literature to 
obtain our results. Simulation results show that the proposed monitoring procedures 
indeed have controlled asymptotic size. Detection timing depends on the magnitude of 
parameter change, the signal to noise ratio, and the location of the out-of-sample break 
point. 

KEYWORDS:Structural change, sequential testing, fluctuation monitoring. 

STRUCTURALSTABILIn IS OF CENTRAL IMPORTANCE to statistical modeling of 
time series. In particular, if the data generating process changes in ways not 
anticipated by one's model, then forecasts lose accuracy. Because of the impor- 
tance of structural stability, much recent effort has been devoted to obtaining 
convenient and powerful tests for it in a variety of modeling contexts; see, e.g., 
Andrews (1993), Hawkins (1987), and Ploberger, Kramer, and Kontrus (1989). 
The section "Breakpoints and Unit Roots" in Journal of Business & Economic 
Statistics (1992) contains work on the stability problem for nonstationary regres- 
sion. However, all of this work deals with "one shot" tests: given a historical 
dataset of fixed size, the tests attempt to detect a structural break within the 
dataset. 

In the real world, new data arrive steadily. Given a previously estimated 
model, the arrival of new data invites the question: is yesterday's model capable 
of explaining today's data? Breaks can occur at any point, and given the costs of 
failing to detect them, it is desirable to detect them as rapidly as possible. 
One-shot tests cannot be applied in the usual way each time new data arrive, 
because repeated application of such tests yields a procedure that rejects a true 
null hypothesis of no change with probability approaching one as the number of 
applications grows (Robbins (1970)). Instead, we propose a genuine sequential 
testing approach, yielding a procedure of controlled asymptotic size as the test is 
repeated. 

'We are grateful to a co-editor and three anonymous referees for helpful comments. Any 
remaining errors are our responsibility. White's participation was supported by NSF Grant SES- 
9209023. 
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Wald's (1948) sequential probability ratio test (SPRT) was seminal for sequen- 
tial testing. Noneconomic applications are now abundant, e.g. Page (1955) in 
quality control and Armitage (1975) in clinical trials. See Siegmund (1985) for an 
extensive bibliography. Basseville and Benveniste (1986) contains papers dis- 
cussing sequential procedures from an engineering perspective. Here we use 
sequential testing to develop tests of structural stability for real-time monitoring 
of economic systems modeled using linear regression. We consider a fluctuation 
(FL) monitoring procedure based on recursive estimates of parameters and a 
CUSUM monitoring procedure based on the behavior of recursive residuals. To 
obtain our results, we extend certain results in the sequential testing literature. 

Our sequential procedure is closely related to the theory of sequential tests 
with power one (Robbins (1970)). An a level sequential test of power one is a 
stopping rule r such that P(r  < a I HO)Ia and P(r  < I HI )  = 1. In one sense, 
our sequential procedure is a simplification of Wald's sequential procedure in 
view of our assumption throughout that sampling costs nothing under the null 
hypothesis of structural stability. In other words, we are satisfied to record the 
new data point without taking any action if the observed process is "in control." 
By contrast, Wald7s sequential procedure is designed with the idea that sampling 
is costly under the null, as well as under the alternative. Hence, it is desirable to 
terminate the sequential procedure as soon as possible when the null hypothesis 
is true. While the assumption of costless sampling under the null is appropriate 
for our problem, it is not necessarily so in other applications. In fact, it is this 
assumption that separates us from some post-Wald sequential tests such as 
Anderson's (1960) sequential test of nonparallel stopping boundaries, and the 
truncated SPRT and repeated significance tests pioneered by Siegmund (1977). 
All of these tests imply PCr < I HO)= 1, often by construction, while this need 
not be true for our procedures. 

This paper is organized as follows. In Section 2, we motivate and discuss the 
sequential testing approach. Section 3 discusses invariance principles of the past 
and present, and the CUSUM and fluctuation instability detectors. Section 4 
contains some illustrative Monte Carlo experiments. A summary and concluding 
remarks are given in Section 5. Proofs are gathered into the Mathematical 
Appendix. 

2. BACKGROUND AND MOTIVATION 

2.1 Monitoring via Repeated Retrospective Tests 

Consider a statistical model that has been estimated from a historical dataset 
of size m. Starting from time m + 1, we begin to observe fresh data sequentially, 
and we wish to monitor the stability of the historically adequate model. A 
seemingly attractive proposal is, for example, that we wait for (say) 5 periods, 
then perform a post-sample F test. If the F test is passed, we update the model 
by including these 5 new data points and wait for another 5 periods and repeat 
the post-sample F test; otherwise, we signal a rejection of stability. Simulation 
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results show that thirty periods later,' we have a one-third chance of mistakenly 
signaling instability. The probability of type one error increases to 70% one 
hundred periods later. If the data are collected daily, ten months later we will 
wrongly reject the true hypothesis of stability more than 95% of the time. 

Nor can retrospective tests for stability be repeatedly applied to monitor 
stability. To see this, we consider a simple model that will motivate all our 
subsequent results. For simplicity let {Y,)be an independent sequence. The null 
hypothesis of "stability in mean" is H,: E(Y,)= 0, t = 1, 2,. . . , and the alterna- 
tive is HI: H, is false. Also assume for now that var(Y,) = cr; for all t under Ho 
and HI. 

A retrospective fluctuation test of Ploberger et al. (1989) for Ho is given by 
FL, = maxk ,ail&(k/n) IFk], where Fk=k-l C:= Y,. The critical value c of 
the FL, test is determined from the hitting probability of Brownian motion. 
Sequentially implementing this test leads to the stopping rule r =  inf{n 2 1, 
IS,] 2 c,), where S, = C;=l Y ,  and c, = &aoc, i.e. when S, exits the region 
bounded by kc,, we signal instability; otherwise continue monitoring. Unfortu- 
nately, as Robbins (1970) notes, the law of iterated logarithm (LIL, e.g. Stout 
(1974, p. 269)) implies that under Ho, Po{S, E [ -c,, c,], for every n 2 1) = 0. 
Thus, sequentially implementing such a retrospective fluctuation test eventually 
rejects H,, so the probability of type 1error is one, asymptotically, and may be 
large in relatively small samples. 

This example underscores the need to find boundary functions such that the 
path of S, crosses with prescribed probability under Ho. Such a choice is 
possible using the functional central limit theorem (FCLT) to approximate the 
boundary crossing probabilities of a normalized partial sum by those of standard 
Brownian motion. 

A limiting relation that is central to our approach is 

(1) lim P{S, r G g ( n / m ) ,  for some n 2 1) 
m 7 m  


=P{W(t) 2 g ( t ) ,  for some t 2 01, 

where S, = C:= E ~ ,W denotes a standard Brownian motion, and g is a stopping 
boundary satisfying some regularity conditions. This relation was first proved by 
Robbins and Siegmund (1970) for iid {st). Our monitoring procedures are based 
on an extension of Robbins and Siegmund's theorem that holds generally for 
sums S, obeying a FCLT, under milder restrictions on g. The use of Brownian 
motion in sequential testing has two merits. First, it is convenient, offers some 
qualitative insight, and provides a unified treatment for many problems. Second, 
it handles the technical difficulty arising from the overshoot problem in a 
discrete time framework since the excess over the stopping boundary in continu- 
ous time tends to be stochastically small. 

In the simulation, we generated data from y, = 0 . 6 ~ ~  where E, is niid(0,l) and x, is an + E, 

AR(1) with the AR coefficient 0.8. The in-sample size is 270; nominal size is 5%. The number of 
replications is 4,000. 
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2.2 Stability and Regression 

Our interest throughout focuses on linear regression Y,=X:@, + E,,  t = 

1,2,.. . , where X, is a k x 1 random vector and P, is a k X 1 nonstochastic 
vector. Throughout, we make the following "noncontamination" assumption: 

ASSUMPTION = 1,2,...,m.A: @, Po for t = 

Thus, the regression parameters are stable over the historical period of length 
m. We are interested in the hypothesis of regression stability in the "post- 
historical" period, H,: @, = @,, t =m + 1,.. . , versus the alternative HI of 
instability that @, changes at some t 2 m + 1. 

A monitoring scheme is a stopping time, determined by a detecting statistic 
(detector) r, and a threshold g(m, n), according to ~,(c)min{n 2 m, T,>= 
g(m, n)). The traditional choice of the detector is the likelihood ratio statistic 
(LR); however we propose two other detectors, the cumulative sum (CUSUM) 
of recursive residuals and the parameter fluctuations (FL). The relation between 
the CUSUM recursive residuals and other CUSUM algorithms in the engineer- 
ing literature as well as the relation between LR and FL detector will be 
discussed below. 

Consider first the CUSUM detector. Let fin= (C?=, XiXi)-'(Cy= XiYJ be 
the OLS estimator at time n. Define recursive residvals as o, = 0 and on= 

&/v,'/~, V , = ~ + X ; ( C ~ : ~ ~ X ~ X ~ ) - ' X ~ ,  i n = ~ - X ; @ n - l ,  n = k + l ,  ...m,.... 
The nth cumulated sum of recursive residuals is Q," = &-'C;=, oi= 

&-'Cf2ifitI wi, for (n -k) /h  I t < (n -k + 1)/k,  where 2 is a consistent 
estimator of a, k = (m -k), and [ k t ]  is the integer part of k t .  It is well known 
(e.g., Kramer, Ploberger, and Alt (1988)) that under Ho 

where "3 " denotes the weak convergence of the associated probability 
measures. 

AS the monitoring starts at m + 1, define QP = oi,  t E [O,W).&-'xf:~~(~+')] 
In particular, for n/(m - k) I t < (n + l)/(m - k), Q r  = &-l(CTT+knoi-
C?!, oi), n 2 1. It follows that t +k-1/2Q," * t + [W(t + 1) - W(l)], t E [O,m). 
The limiting process W(t + 1) - W(1) is a Brownian motion. If (1) holds, then we 
have (given (5) and (6) below) 

n
I Q ~ I n d k g ( - ) ,  for some n 2 1 

m 7 m  m - k  

=~{lW(t ) lng( t ) ,  for some t 2 0). 

This suggests the following monitoring procedure: whenever the path of I&,"] 
exits the boundary (m -k)1/2g(n/m -k), the null hypothesis is rejected, imply- 
ing that the model identified from the stable historical period is no longer 
relevant for forecasting. 
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Another limiting result similar to (1) is that 

(3) lim P{IS,I 2 G g ( n / r n ) ,  for some n 2 m) 
r n p m  

=P{lW(t>l 2 g ( t ) ,  for some t 2 1). 
This result is central to the later FL monitoring procedure; it can be applied to 
(2) to yield an alternative CUSUM monitoring scheme as 

n 
(4) IQ; 2 J X ~ ( ~ ) ) ,for some n 2 rn  

m /l m 

=P{lW(t)l 2 g ( t ) ,  for some t 2 1). 

CUSUM algorithms other than those using recursive residuals can also be 
considered. For a simple null versus simple alternative hypothesis, the CUSUM 
algorithm based on LR statistics for independent sequences is well known, e.g. 
Page (1955) and Hinkley (1971). The Page-Hinkley test is optimal in the sense of 
minimizing the conditional detection delay (Lorden (1971), Moustakides (1986)). 
However, except for very simple models, the LR detector is exceedingly 
complex and its optimality is no longer available in general (in Section 3.4 we 
take up optimality issues in greater detail). From an engineering perspective, 
some simplifications of the computationally heavy LR detector are desirable. 
Nikiforov (1986) proposes using an asymptotic expansion of LR detector to 
reduce the complexity. The resulting CUSUM of scores is shown to be effective 
against local alternatives. Basseville (1986) studies on-line change detection in 
autoregressive models and suggests alternative detectors based on Kullback 
divergence and Chernoff's distance between conditional laws. Our CUSUM is 
not a LR-type detector in general, but its computational advantage is obvious, 
which makes it easy to build into software. In contrast, Basseville7s approach has 
to be studied separately for each problem and is difficult to study theoretically. 
As for the choice of the threshold, Nikiforov's CUSUM algorithm uses a 
constant threshold which needs to be fine tuned to ensure proper test size and 
short detection delay (Nikiforov (1986, pp. 245-248)); we use the invariance 
principle to suggest a particular stopping boundary, perhaps a less sophisticated 
but nevertheless quite convenient approach. 

An alternative approach to monitoring stability rests upon monitoring the 
stability of the fluctuations of sequential parameter estimates. We take this up 
in Section 3.3 below, where we show that convenient tests for stability can again 
be constructed using relation (3). The foregoing discussion thus motivates us to 
seek conditions that will permit application of (1) or (3) whenever S, satisfies a 
FCLT, under conditions on g as mild as possible. We now turn to this task. 

3. MONITORING PARAMETER CHANGE 

3.1 Invariance Principles and Boundary Crossing Probabilities 

Let { S , }  be the partial sum process constructed from {q}.We say that { E ~ }  

follows the FCLT if A + ~ ' r n - ' / ~ ~* A + W(h), h E [0,a), where S, =[ ~ A I  
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Cy= si and u t  = limn IZ-'E(S;) < m. Robbins and Siegmund (1970) proved 
that for an iid { E ~ )(3) holds for a certain class of continuous functions g(t) that 
satisfy (a) t-1/2g(t) is ultimately nondecreasing as t -, m, and (b)
1,"t-3/2g(t)exp[-(1/2t)g2(t)]dt < a. In addition to (a) and (b), (1) also holds 
under (c) t-ll2g(t) is nonincreasing for t sufficiently small, and (d) 
lo1t -3 /2g( t )exp[-(1/2t)g2( t ) ld t< m. 

Though this is useful, the iid assumption is not always applicable in time 
series regression, where the errors may be martingale differences and not 
independent. To make our monitoring scheme more relevant for time series 
applications, it is useful to have the same limit relation hold for a wider class of 
stochastic sequences than just iid. Segen and Sanderson (1980) provide a partial 
resolution of this problem. Under the condition that the boundary function 
t-'I2&) is nondecreasing, they show that for any stochastic sequence {S,) that 
satisfies the FCLT the limit relation (1) continues to hold. However, this 
condition on g is more restrictive than the condition that t-1/2g(t) is ultimately 
nondecreasing imposed by Robbins and Siegmund. As a result, convenient 
boundary functions such as the ones we use in Section 3.3 below are ruled out. 
Further, without the nondecreasing assumption for t-1/2g(t), Segen and 
Sanderson's proof will not work. 

We now propose a limiting relation similar to Segen and Sanderson's without 
imposing the nondecreasing condition. For this, let D be the union of the set of 
continuous functions on [O, a )  and the set of cadlag piecewise constant functions 
on [O, a )  such that for all f E D, f has at most finitely many discontinuities over 
any interval [O, Nl, N E IW', and such that every discontinuity point of f is 
rational. Endow D with the metric 

d ( f ,g )  = 2-" min{ sup lf(t) -g(fll,l).  

n E N t e [ O , n l  


This induces the topology of uniform convergence on compacta on D. Let 
C c_D denote the set of continuous functions on [O,m). Let p be the Wiener 
measure on (D, 9 1 ,  where 9 is the Bore1 u-field on D. Note that p(C) = 1. 

Let ( 0 ,  F,P )  be a complete probability space and W: R x  [O,m) + IW be 
measurable on R and continuous on [O,m). Suppose that the mapping w -, 
W( w, .) induces Wiener measure on (D,F) .  Given g: [O, m) + @+ (the extended 
real numbers), define the epigraph epi g = {(t, x): x 2 g(t)} and epi g+ = 

{(t, x): x > g(t)}. For a measurable, real-valued stochastic process X on R X 
[O,w), define 7," = infit 2 0: X(., t) E epi g}, and r,"+= inf{t 2 0: X(., t) E epi gf  1. 
We say that 7; is continuous at f E D if d( f ", f )  + 0 implies that p(r,f, r,fn) + 0, 
where p is a metric on [O, m] inducing the Euclidean topology on [O, a ]  and 
having the property that any sequence increasing without bound converges to a. 

We use the class of "regular" functions g having two properties: 

(5) ~{r:= r$} = 1 and 

(6) P{ w : rt' is continuous at W( w, .)I = 1. 
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These two properties for g are fairly abstract. The following lemma provides 
some useful sufficient conditions; see Appendix A for a proof. 

LEMMA3.1: The class of regular g includes the class of cadlag functions from 
[O, X )  to (Wf ha~ling g(0) > 0,  and having at most countably many points, t ,  such 
that the upper right dericatice of g at t is infinity. 

Let r f g= inf{t 2 1: X ( w ,  t )  E epi g}, and 7 f g += inf(t 2 1: X ( w ,  t )  E epi g'}. 
Small modifications in the proof of Lemma 3.1 allow us to dispense with the 
condition g(0)> 0. We record this as Lemma 3.2 without proof. 

LEMMA3.2: The class of g such that P { r f g  = rf , -}  = 1 and P{r;, Jcontinuous 
at W (  w, .)} = 1 includes the class of cadlag functions from [0, x )  for R+ hacing at 
most countably many points t such that the upper right derivatir!e of g at t is infinity. 

Let {S,}, ,.be a sequence of random variables defined on (R ,F , P )  with 
So = 0. For each w E fl,define { ~ : ( w ) :t E [O,m))by X ; ( W )  = S,,,(w). For each 
m E N define X m  = { X T :  t E [0,m)} by XT = mp' /2X: , .  Let p"' be the proba- 
bility measure on ( D ,9)induced by Xm (that is, pm(A )  =P{W :  X m (W )  EA)). 

THEOREM3.3: Suppose that pm ;p. If g is a regular function, then qn' 
concerges to 7: in distribution, and T , , ~converges in distribution to r y g .  

Because the [O,x]-valued random variables 7:'' are converging to 7: in 
distribution only, we cannot conclude (without further argument) that 
P{T:"' < m} --, P(7: < m). However, we can conclude for all T in a set with 
an at most countable complement in [O,x), P { T ~ ' "< T )  +P { T ~< T )  and 
PIT?; < T} -+ P(T:, < T } .This is surely sufficient for sensible applications, but 
for those concerned about extreme tail behavior, we include an extra condition 
on g's behavior near infinity that guarantees P{T$'~< x )  -+ P{T,"' < x) and 
P { T ~ ;< a}-+P{T; < m). The condition ensures that P { q  = x}= 0. 

THEOREM3.4: Let {S,, n E N) be a stochastic sequence defined on a complete 
probability space. Suppose that ( i )  the probability measure pm on the measurable 
space of cadlag functions ( D ,9)induced by XT 5 { m p ' / 2 S,,,, t E [0,m)} con-
uerges weakly to the Wiener measure p ,  i.e. m 1 / 2 S I m , 1  ~ ( t \ ,  t t [O,m), ( i i )  g is 3 

a regular function, and (iii) t - ' I 2 g (  t ) is eventually nondecreasing. Then: 
( a )  lim, .,P(S, 2 G g ( n / m ) ,  for some n 2 1) = P{W(t )2 g( t ) ,  for some 

t 2 0); 
( b )  lim,., P{S, 2 f i g ( n / m ) ,  for some n 2 m )  = P{W(t )  2 g ( t ) ,  for some 

t 2 1). 

Thus (1 )  holds when S ,  satisfies a FCLT and g is mildly restricted. Theorem 
3.4 supports application to testing regression stability in a range of time-series 
contexts relevant to economics. 
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We close this section with remarks on the calculation of the boundary 
crossing probability. The computation is generally difficult in the sense that 
analytical expressions for the boundary crossing probability are not always 
available for an arbitrary function g(t). Robbins and Siegmund (1970) give a 
useful theorem (see Theorem A in the Appendix) powerful enough to cover 
many well known results. Instructive examples are given in an earlier version of 
this paper (Chu, Stinchcombe, and White (1993)). Sen (1981) also gives some 
miscellaneous results. An extensive treatment is given by Lerche (1984). Two 
particular boundary functions considered in the sequel are 

(7) P{I l for some t I )~ ( t )r [t(a2+ ln t ) ~ " ~ ,  

= 2[1 - @ ( a )+ a+(a)l and 

(8) P{I w(t)l r ( t  + 1)'l2[a2+ ln(t + 1)1' /~,for some t > 0) 

where @ and + are the cdf and pdf respectively of a standard normal random 
variable. 

3.2 Application to CUSUM Monitoring 

The results of the previous section now can be immediately applied to obtain 
a CUSUM monitoring result. It suffices to pick g properly. Unfortunately, this 
choice is often dictated by mathematical convenience rather than optimality, 
since crossing probabilities for an arbitrary boundary are analytically intractable 
in general. Segen and Sanderson (1980) choose g(t) = 2t log(1og t), a function 
satisfying the nondecreasing condition in their theorem. Due to the LIL, this 
g(t) increases about as slowly as is possible to have P{IW(t)l >g(t), for some 
t r 0) < 1. Hence, Segen and Sanderson's choice is motivated by the fastest 
detection of change. 

We shall not consider this boundary since our simulations suggest that its 
probability of type one error is erratic in finite samples. Moreover, the choice of 
g(t) = 2t log(1og t) highlights the main difference between much of (but not all 
of) the engineering and quality control applications and our economic situation. 
Elsewhere it is implicitly or explicitly assumed that the system can be reset at 
small or zero cost after a false alarm. We practically never have that option in 
economics. Hence, we use (7) and (8) to implement a CUSUM monitoring, 
summarized as follows. 

COROLLARY X: Po+ E,, t = 1,.. .,m + 1,.. ., where X, is a 3.5: Suppose (i) Y ,= 

k X 1 random vector such that m Cy! XI and rn - Cy! X,X; converge in 
probability to b, a nonstochastic k X 1 vector and M, a k x k matrix of fill rank, 
respectively; (ii) {&,Iis a martingale difference sequence with respect to a sequence 
of a-algebras {F,) such that E(&;) < co and E(s: IF,_ ,) = a: for all t, where F, is 
generated by { . . . ,(Y,_,, X:- ,I, (Y,- ,,X:)); (iii) the sequence {XI 6,) obeys the 
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functional central limit theorem, i.e. A +m - ' '/%CI,"l X,  E~= A -12(a , : ~ )  
W(A), A E [O,m). Then: 

for some rz 2 m 1 = 2[1- @ ( a )+ a 4 ( a ) ] .  

The required conditions in Corollary 3.5 are not the weakest, but they are 
sufficient to cover many interesting cases. The asymptotic sizes of the CUSUM 
monitoring are fairly easy to control from the right-hand side of (9) and (10).For 
CUSUM monitoring based on Q,", the 10% and 5% asymptotic size corresponds 
to a2= 4.6 and 6 respectively. Equally handily, we obtain the 10% and 5% 
asymptotical size of the CUSUM monitoring based on Q," by setting a' = 6.25 
and 7.78 in (10) respectively. 

Consider the alternative of a one-time parameter shift H , : Y ,  =X:P,,  + E,, t = 

1,2,. . . [ m r ] , and =X; P I  + E,, t = [ m r] + 1,. . . , where r > 1 is the break 
point. The CUSUM monitoring procedure can be shown to be consistent if the 
mean regressor is not orthogonal to the magnitude of shift ( P I- P,,). Since 
E(2 , )= 0 for i I[ m r ]and E(2 , )= ( r / h )E (XI r ) (PI - P,, ) for i > [ m r ]and A > T ,  

consistency can be established by showing that 

lirn ( [ k h ]+ k ) ' l 2 { a %  l n ( ( [ k ~ ]  + k ) / k ) ~ ~ "= 0. 
m 7 = 

Before ending this section, we emphasize that it is practically possible to 
implement the CUSUM monitoring with other nontrivial boundaries. Since a 
boundary function is defined implicitly through the measure F in Theorem A, 
one first defines the measure F in a way that the results of Theorem A hold. Of 
course, we should not expect to obtain neat analytical solutions as in (9) or (101, 
but we can resort to such programs as MATHEMATICA to evaluate the 
integral in the right side of Theorem A(b) numerically by specializing lz, b, 
and r .  

3.3 Fluctuation Monitoring 

An alternative approach rests upon monitoring the stability of the fluctuations 
of sequential parameter estimates. Let Y ,  =X:P ,  + E,, as before. The key 
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condition is that the sequence {X,E,) obeys the multivariate functional central 
limit theorem (Phillips and Durlauf (1986), Wooldridge and White (1988)): 

where Vo = lim, ,,m -'E(SmSh) with Sm= CT= X, E,, and _W(N is a k-
dimensional Wiener process such that each elements of _W(h) is a univariate 
Wiener process, independent of the others. 

We define a fluctuation detector by 

where Dm=M;'V0M;', Mm is O(1) and uniformly positive definite such that 

(C?= XtX,'/m) -Mmf; 0. The essential ingredient of this FL detector is the 
deviation of the updated parameter estimate fin from the historical parameter 
estimateApm.If the null hypothesis is correct, the process of constant interpola-
tion of Znis in control and all of the component process of ẑ L,i = 1,.. .,k, will 
stay below a monitoring boundary g(n/m) with probability 1- a ,  i.e. ~ ~ { l z ^ ~ l <  
m'/2g(n/m), n = m + 1,.. ., for all i = 1,.. .,k) = 1- a .  

Define P:Dk -+ Dkas a continuous functional such that ?I!(f )  =f(t) -80). 
Let 

Directly form the multivariate FCLT, X," - W(h). Hence, ?I!(X,") = 

m - l / 2  2 - IY(_W(h))= _W(h)- hW(1) = _WO(h),TE[I,m). Since the limiting 
process, {_WO(h),h E [I,w)), is a k-dimensional Brownian bridge, with elements 
stochastically independent of one another, lim, .,~ , , { l z ^ ~ l <  n =m'/2g(n/m), 
m + 1,.. ., for all i = 1,...,k) = [P{IWO(h)l<g(h), h 2 l)lk.From this it suffices 
to consider the boundary crossing probabilities of a univariate Brownian bridge 
process. 

The process {WO(h),h E [I,w)} has covariance E[WO(~)WO(S)]= t(s - 11, for 
d 

t > s > 1. It can be verified that {WO(h),A E [ l , ~ ) )= { ( A  - 1)W(A/h - I), h E 

[I,w)) by rescaling the time parameter. It follows that p{WO(h)2 g(h), for some 
A 2 1) =P{(A - l)W(h/h - 1) 2g(h), for some h 2 1). Hence the crossing prob-
ability of WO(h)can be investigated in terms of the Wiener process. We choose 
g(t) = [t(a2+ In t)]1/2 as in (7), which is analytically convenient but not neces-
sarily optimal in the sense of minimal detection delay. Putting t = h/h - 1, it 
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follows that 

(13) ~ ( ( tI ) - ' /  w ( ~ ) I  1)- '[t(a2+ ln t)1112,for some t r 1)- r ( t  -

A 
,for some A 2 1 

The crossing probability can be easily computed via the right side of (13). 
When a2= 7.78 and 6.25, the crossing probabilities are 0.05 and 0.10 respec-
tively. Discretizing A as n / m  yields the boundary 

n - m  n n 1 / 2  

g ( n / m )  = ( m)[ j =)[a2+ l n j ~ ) ] ]  

It follows that 

i n - m  [(=)n n 1 / 2  

lim P /i;mAl~ [a2+2 ml/2j T) ln(=)]] 
m 7 

for some n 2 m s 2[1- @ ( a )  + a+(a)li 
The foregoing discussions can be summarized in the following corollary. 

COROLLARY3.6: Suppose that ( i )  I:=Xi Po + E,; (ii) {XtE,} obeys a FCLT 
with Vo , - Jt I definite;= lim, ,m 'E[(Cy= E,)(C~=Xtct) ' ]  positiue (iii) 
,-I Ct=I XtX: -Mm + 0, where {Mm) is O(1) and uniformly positive definite; m P 

( iv)  there exists a positive semi-definite matrix 6, such that 6, -Dm + 
P 

0, where 
D~ =M ; ~ V ~ M ; ~ .  

Let 2, =nD; ' I 2 (  fin - fimim). Then: 
( a )  A +m-1/2&,A, - A +_Wo(h),A E [I,x), where _Wo(h) is a k-dimensional . , 

Brownian bridge: 

n - m  n n 1 / 2  
( 6 )  

rn 7 o: iLAl [a2+ ~ n ( ~ ) ] ]m112j m )  [(G) 
for some n 2 m and some i 

= 1 - [I- 2[1-  @ ( a )  + a+(a)ll
k 
, 

where z*;, is the ith component of 2,m 
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Corollary 3.6 summarizes the monitoring procedure based on the fluctuation 
of ( n  > m) relative to jm.Given the number of regressors, k, and arbitrary 
probability of type one error a,we can determine the constant a2  in the 
monitoring boundary. Note that jnLis never updated. This, however, does not 
mean that we always yse jmfor subsequent analysis. If there is no wa~ning of 
parameter shift, it is P, that we would use for forecasting rather than P,, since
6, is a more accurate estimate than j, under the null hypothesis. 

The FL monitoring in Corollary 3.6 has asymptotic power one under global 
alternatives of one-time parameter shift; we can show that 

n - m  n 1/2
m - ' / 2  (-m ) [ ( A ) [ a 2 + l n ( _ m ) l l  +' 

while max,{m-' l .~[~ ,~ l}  diverges. Formally we have the following theorem: 

THEOREM3.7: Suppose (i) =X: Po+ E, for t = 1,2, . . . [mr  1, and Y ,=X,' PI 
+ E, for t = [ m r ]  + 1,.. . ,P, # Po, T > 1; (ii) all conditions in Corollaly 3.6 hold 
except (a). Then 

n - m  n n 1/2
lim ~(ii;,,,~~ [(=)2 ml/' 

m y %  [a2+ ln( = ) I ]  

3.4 Discussion 

Because most prior results focus on the univariate location model, we special- 
ize our results accordingly to make a direct comparison with the sequential 
testing literature. Let X ,  be unity. The random function in (12) becomes 
2: =nu, '(E- Po). It follows that 

=p{Iw( t ) l  r ( t  + 1)'12[a2 +in(t  + I)]"~, for some t > o }  

Because Po is known here, m does not necessarily correspond to the historical 
sample size. It is perhaps useful to think of m as determining the resolution of 
the constant interpolation constructed from the (2:)sequence. To start moni- 
toring from n = 1, we track the path of the FL detector 2: every time a new 
data point arrives. Note that the continuous version of this monitoring boundary 
is g( t)  = (t + 1)'l2[a2+ ln(t + 1)]1/2, which does not satisfy the requirement that 
t-'/2g(t) is nondecreasing over [0, m). Hence (14) is not a consequence of Segen 
and Sanderson's (1980) theorem. 

The accuracy of the asymptotic approximation of error probability in (14) 
clearly depends on m. Following Robbins (1970) by setting m = 1and a 2  = 4.6, 
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we obtain g(n/m) =g(n) = (n + 1)'12[4.6 + ln(n + I)]'/~ giving size less than 
10% (see the further derivation below). One can also choose larger m, say 
m = 100 to obtain g(n/100) = (n + 100)'/~[4.6+ ln((n/100) + which 
should deliver better finite sample size than the choice m = 1. However, the 
diameter of the acceptable region for the monitoring boundary with m = 1 is 
smaller (greater) than that with m = 100, provided n r 133 (n > 133). Conse- 
quently, if the parameter shift occurs earlier (later), the choice m = 1provides 
faster (slower) detection than the choice of m = 100, though both will detect it 
eventually. We have seen that the performance of FL monitoring in terms of the 
detection delay depends on the choice of m, which is in turn determined by the 
location of the break point. Hence, the optimal m cannot be determined 
without an explicit alternative about the location of a future break point. 

Another interesting aspect of (14) is its relation to the traditional Wald SPRT. 
Consider a sequential test for H,: Po= 0 against the normal mixture alternative 
HI:Po= 8,such that dF( p) = ( 2 ~ r ) - ' / ~exp(-p2/2)dp, where p = S/ao is the 
magnitude of change relative to the standard deviation of the noise. Let h: and 
h; be the pdfs of (Y,,. . .,Y,) under Ho and HI respectively. The LR is 
I, =h;/h:, where h i  = /"_ hht, dF( p). Straightforward algebra yields 

= ( 2 ~ r ) - ' / ~ / e x ~ [ - i ( n+ l ) p 2+ pZ;]dp, where Z: = n q l F , .  

But 

so we have 

It follows from Wald's lemma (1948, p. 146) that P{I, 2 r,for some n 2 1) I 8-'. 

Specializing to r exp(a2/2) gives P{lZ,OI r (n + ~ ) ' / ~ [ a ~= + log(n + 1)]1/2, for 
some n 2 1) 5 exp(-a2/2). This is precisely the monitoring boundary in (14) 
when m = 1, Of course, this kind of interpretation is not necessarily available 
for other boundary functions. In fact, Wald's SPRT under different alternatives 
will result in completely different monitoring boundaries. 

Consider now No: P = Po vs. HI: P = PI. It is easy to show that Wald's SPRT 
with the stopping rule r*= inf{n 2 1,1, 2 c ) yields a linear monitoring boundary 
c/ao 4- [( P1- Po)/2q]n.  It is well known that Wald's SPRT in the simple vs. 
simple hypothesis is optimal in the sense that for all stopping rules such that 
P(7I Ho) I a ,  r* minimizes the expected delay E(r  1 HI): see Siegmund (1985). 
Hence the present linear boundary is optimal while the monitoring boundary in 
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(14) is suboptimal. Nevertheless, this remarkable optimal property applies only 
to the case of simple hypotheses and an independent error sequence. If the 
alternative hypothesis is composite, one should expect to obtain a different 
boundary. For example, in the previous example of the normal mixture alterna- 
tive, we followed Wald's SPRT principle and used the same stopping rule 
inf{n 2 1, 1, 2 c}, but obtained a different boundary. To assert some sort of 
optimal property for (14) (say, in the sense of minimal delay) is a challenging 
task. In fact, there is no known optimality result in the composite hypothesis 
testing. One can only hope that Wald's SPRT principle with its associated 
stopping rule continues to perform well in composite hypothesis testing 
situations. 

When Po is unknown, the relevant random function becomes f,,= 

naG1(%- Fm);see (11). In contrast to the well developed literature of the usual 
two-sample sequential test, we are now dealing with the so-called partially 
sequential two-sample test, perhaps a less well known branch of the sequential 
testing literature; see Wolfe (1977) and Switzer (1983). In the partially sequen- 
tial two-sample framework, the first sample is fixed while the second sample is 
observed sequentially after the first sample is complete. In our framework, the 
first sample is the historical sample of fixed size m, a data set available to 
econometricians at the time of designing the FL monitoring. The second sample 
is observed sequentially, and we do not wish to take more observations than are 
necessary to signal i n ~ t a b i l i t ~ . ~  In one sense, our FL monitoring mimics Wald's 
SPRT since it reduces to the Wald's SPRT when F, is replaced with Po. In 
another sense, our FL monitoring is a modification of Switzer's procedure. -
To see this, rewrite 2, = c i l ( n  -mX%_, - Y,), where Epm= l / (n  -
m)C:,, + ,Y,. Switzer's (1983) stopping rule is: T = inf{n: I F, ,-F, I 2 c / n  -m}, 
which is just the FL detector with constant boundary, i.e. T =  c},inf(n: 12~12 
assuming uo= 1. Clearly, Switzer's procedure terminates with probability one 
even when Ho is true. This is not appropriate since we assume that sampling 
costs nothing under Ho. 

To investigate the optimality of the monitoring boundary, it seems attractive 
to treat m as fixed but make the choice of m part of the monitoring design 
scheme. Intuitively, the choice of m affects the average run length (ARL, i.e. 
E(r I H I ) )in the second sample. Switzer (1983) considered the optimal choice of 
m for independent sequences. While an analytical solution is not available, his 
simulations seem to indicate the existence of optimal choice. We do not have an 
optimal choice for m at present; further research on this topic is warranted. 

If p, is known, the partially sequential two-sample test reduces to the one-sample sequential 
test such as Wald's SPRT. If one does not care about thc detection timing and can afford to wait 
until enough post-m observations are in, post-historical stability can be investigated via nonsequen- 
tial retrospcctive stability tests, which is the case of the fixed two-sample test. If m is treated as 
random rather than given (such as in a controlled experiment), we have the standard two-sample 
sequential test. 
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4. SIMULATIONS 

In this section, we simulate the finite sample properties of our monitoring 
procedures. To focus our discussion, we concentrate on FL monitoring; results 
on CUSUM monitoring are not reported here but are available on request. We 
generate data from iid N(2,l) random variables and compute the empirical 
crossing probabilities under H, for historical sample sizes m = 25, 50, 100, 200, 
and 300. The monitoring horizon q is set to be two, four, six, and nine times the 
historical sample size. Theory predicts that if m is large enough and q is 
extended to infinity, the crossing probabilities should approach 5% and 10% if 
a* in Corollary 3.6 is 7.78 and 6.25 respectively. Though it is not possible to set q 
equal to infinity in simulations, the results summarized in Table I give no hint of 
improper size except when m = 25. The empirical crossing probabilities when 
m = 25 are slightly over the 5% nominal level, indicating that the probabilities 
when q = co will be overstated. 

To examine the power of FL monitoring, we create an artificial out-of-sample 
structural break at t = 1.1X m, at which the mean shifts from 2 to 2.8 perma-
nently. The FL monitoring indeed signals the structural change eventually, i.e. 
the test is consistent. Traditionally, one is more concerned about the ARL of a 
sequential procedure. For this, we summarize the empirical distribution of the 
first hitting time in Table 11. Three remarks are in order. 

First, the standard deviation of the first hitting time decreases significantly 
from m = 25 to 50 and from m =50 to 100. Moreover, the standard deviation is 
rather stable after m reaches 100. This seems to suggest that the precision of FL 
monitoring depends upon how accurately we can estimate the unknown parame- 
ter from the historical sample. Intuitively, the parameter estimate from the 
historical sample serves as the benchmark in the FL monitoring; consequently, 
increased accuracy of parameter estimates resulting from larger m improves the 
monitoring precision. The fact that the standard deviation stabilizes after 
m = 100 is perhaps peculiar to our simulated location model. A sample of 100 
should provide a reliable estimate of the mean; the accuracy gain from a sample 
of size larger than 100 is insignificant in this scenario. One conjecture is that 
increasing the historical sample size beyond a certain point does not appreciably 
improve the precision of detection. 

TABLE I 

EMPIRICALSIZESOF FL MONITORING 

q = 2 m  4.0 8.0 3.5 6.7 3.0 6.0 3.3 7.0 3.2 6.8 
= 4 m  5.1 8.6 4.1 7.0 3.7 7.1 3.4 7.4 3.6 7.4 
= 6 m  5.2 9.5 4.3 7.6 4.2 7.6 3.6 7.5 3.5 7.7 
= 9 m  5.2 9.6 4.3 8.0 4.3 7.9 4.0 8.0 4.1 7.9 

Nore: The number of replications is 2,500. 
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TABLE I1 

Break 1st Q Median 3rd Q Mean Std ARL MRL 

Nore: The number of replications is 2,500, with a 10% monitoring boundary. The first quantile (1st Q ) is 
the integer that gives empirical probability closest to  25% rather than exactly 25%; similarly for the 
median and third quantile. Mean, standard deviation (std). ARL, and MRL are rounded to nearest 
integers. 

Second, Table I1 also shows the ARL and maximal detection delay (MRL) of 
FL monitoring. The ARL's are more or less stable except when m is small 
(m = 25). The MRL signifies the worst performance in terms of detection 
timing. The relation between MRL and m resembles a continuous decreasing 
function. The benefit of having a shorter MRL in large samples seems signifi- 
cant. It is reasonable that these measures of detection timing (ARL and MRL) 
depend on the magnitude of parameter change. Simulation results under the 
alternative of larger magnitude of change (not reported here) indeed confirms 
this conjecture. Specifically, both the ARL and MRL decrease as expected. 
When m = 100 and the parameter shifts from 2 to 3, the ARL decreases to 17 
(it was 25 in Table II), and the MRL decreases from 184 to 85. Moreover, the 
standard deviation of first hitting time is also found to be lower as the 
magnitude of parameter change gets larger. 

Third, it is interesting to note that the distribution of the first hitting time is 
generally nonsymmetric for smaller samples, indicated by the discrepancy of the 
mean and the median. Nevertheless, the asymmetry becomes less obvious when 
the historical sample size increases. 

We also simulate and record the empirical first hitting time distributions for 
an out-of-sample structural break occurring at t = 1.2m. The FL monitoring 
procedure is found to be less effective. All of the ARL, MRL, and standard 
deviations increase. In particular, given the same magnitude of change, the ARL 
is prolonged to 42 periods when m = 100. Ideally, we would like to have the 
same ARL regardless of the location of the break point. This ideal situation 
does not occur because the monitoring boundary we chose increases a little too 
fast. Here we have encountered an obvious dilemma. The limiting process for 
fluctuation monitoring, WO(h),has growing variance; hence the monitoring 
boundary must be increasing to take into account this fact. How slow a growth 
rate in the boundary function can be allowed in order to have the right test size 
and faster detection is dictated by the computation of the boundary crossing 
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TABLE I11 

ESTIMATION BREAKPOINTOF THE 

True break 110 120 220 240 330 360 
Avg estimate 114 122 222 238 330 356 
Std error 8 8 7 9 7 11 

probabilities. The growing variance of wO(h),which induces an increasing 
monitoring boundary, is a problem inherent to this type of monitoring. Even if 
the crossing probability for an increasing monitoring boundary with slower 
growth rate than the one we currently use can be computed, the ARL will still 
be longer in the alternative of a late structural break. One way to improve the 
detection timing is to consider a fixed window monitoring rather than the 
growing window (recursive) FL monitoring. This approach is considered by Chu, 
Hornik, and Kuan (1995), in which a retrospective moving-estimates test is 
proposed. Another possibility is to adjust m as we move through time. We leave 
treatment of this possibility to later work. 

After the FL monitoring procedure signals a structural change, the next step 
is to revise the model. To do so, it is necessary to know the location of the break 
point. We suggest using the point at which the maximum of the LR statistics is 
obtained, defined from time point m + 1 to the first hitting time (see Horvath 
(1994)). The performance of this locating procedure is briefly summarized in 
Table 111. It is seen that the maximum LR statistics do pretty well in locating the 
break point. 

5. CONCLUDING REMARKS 

Any statistical model, no matter how well it fits the historical data, must 
always face the challenge: is yesterday's model capable of explaining today's 
data? An historically adequate model that behaves poorly outside the data set 
cannot generate accurate forecasts. We have suggested two real-time monitoring 
procedures for high frequency data sets: the CUSUM and the FL monitoring 
procedures. We also widen the class of boundary functions beyond those 
suggested in the literature. Our simulation results conform well with the 
intuition that detection timing depends on the magnitude of parameter change, 
the standard deviation of the disturbance term, and the location of the break 
point. 

We have focused on deriving monitoring procedures with asymptotically 
correct size for a given boundary function. It is obvious that the choice of the 
boundary function determines the speed of detection. We chose a particular 
monitoring boundary for mathematical convenience. Of all the continuous 
boundary functions that have everywhere finite upper right derivative, there may 
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imply that there exists a 6 such that for all t" E ( t  - 6, t ) ,  W ( w ,  t " )  >g( t" ) .  Hence T:(w) < t .  
Similarly, if W ( w ,  t )  < a,  then ~ ~ ~ ( w )+ t .  

We now prove (5). Since epi g+cepi g implies that 7: s 77 for all w, if T:( w )  = so, then 
T$( W )  = m. The only remaining case is 7: < so. We divide {TY< m) into two sets, depending on 
whether or not ~ : ( w )  belongs to the set of discontinuities of g. 

Now the discontinuities of g,  denoted A, form a countable, hence measurable set. By Step A, Q 
must be nonatomic on the complement of the discontinuities of g.  By assumption, the points of g 
with infinite upper right derivative are countable, hence their intersection with AC has Q-mass zero. 
By the strong Markov property, for every N E N, the process B N (  w,  t )  = W (  w, t  + (T:(o) A  N ) )  -
W (  w, T:(w) A N )  is a Brownian motion. It is well known that with probability one, the upper right 
derivative of B ~ (  0 is infinity. Combining these observations, we have that outside of a set w, .) at t = 

of measure zero, if r:(w) = T:( w )  A N and W (  w, .) first hits g at a point in A', then it hits where 
W (  w, .) has an infinite upper right derivative. For such w, T:( w )  must equal T ~ ( w ) .Letting N tend 
to infinity shows that for almost all w in {r:(w) < m)  n { ~ y ( w )  = r;(w).E A'), ~ [ ( w )  

Because A is measurable, Step B implies that for almost all w in (7: E D )  and for all t  E  A, 
T:( w ) = t implies g ( t ) < lim, .,g(s) .  Step C and continuity of W (  w, .) imply that, outside a set of 
measure zero, every w in (7: E A) satisfies r:(w) = r;(w). Thus, excepting at most a set of 
measure zero, we have rgw= 7 3 ,  proving (5). 

We now turn to (6). The crucial step is the following: 

Step D: For all r > 0,  and for almost all w in {T: > r ) ,  there exists a 6 > 0 such that 
inf{lW (  w, t )  -g(t)l: t  E [O, r ] )  > 6. 

Let T,( w )  denote the set {t E [O, r ] :  Ig(t) - W (  w, t)l I l / n ) ,  where g is the closed graph corre- 
spondence defined by g ( t ) = {g( t ) ,  g ( t  - )), where g( t  -) = lim, .,g(s) .  T,( w )  is a closed subset of 
the compact set [O, r ] ,and T,+ ,( w ) c T,( w).  Hence either there exists an n' such that for all n 2 n', 
T,( w )  = 0,or T( w ) = n, T,( w )  is nonempty. Suppose T(w )  is not empty, and let t o E T (  w). If t o  is 
a continuity point of g,  that is, t o E AC, then aW ( w ,  t o )  = g ( t O ) ,  which implies that rgw(w) ~ r ,  
contradiction. If t o E A, then the continuity of W ( w ,.) implies that W ( w ,  t o )  = g ( t O )  or g ( t o- 1. But 
because the set A is countable, P ( U , ,  ,{ w :  W (  w,  t )  E {g( t ) ,  g ( t  - )))) = 0. 

We now prove the almost everywhere continuity of rg'. By (5), we need only prove the almost 
everywhere continuity of 7; Because g(0) > 0 and g is right continuous, the LIL implies that 
P { T ~= 0 )= 0. We will divide the continuity proof into two parts, 7; E (0,  m) and T$ = m. 

Suppose that 73(w ) = r E (0,m) and X "  is a sequence of functions with d ( X n ,  W (  w, .)) + 0. We 
must show that for all E > 0,  there exists an N E N such that for all n 2 N ,  lr;(w) -73'1< E. Pick 
arbitrary 8 > 0. By step D, there exists a 6, > 0 such that inf{lW( w, t )  -g(t)l: t  E [O, r  - & / 2 ] )> 26,. 
By the definition of 73,there exists a 6, > 0 and a t" E [ r ,  r  + 8/21 such that W ( w ,  t " )  > g ( t f ' )+ 26,. 
Let 6 = min{d,, 6,). Pick N sufficiently large that for all n 2 N, 

By the definition of a,, 73' 2 r - & / 2> r - 8. By the definition of a,, 7 3 "  s r + & / 2 < r - 8.  Hence 
17; - T $ ~ I <E as required. 

Now suppose that T T (  w )  = m, and X n  is a sequence of functions with d ( X n ,  W (  w, .)) + 0. We 
must show that for all r E (O,m), there exists an N E N such that for all n 2N, T $ ~> r. By Step D, 
there exists a 6 > 0 such that inf{lW(w, t )  -g(t) l :  t  E [O, r + 11)> 6. Pick N large so that for all 
n 2 N ,  sup{ lXn( t )  - W (  w, t)l: t  E [O, r  + 11) < 6. For all n N ,  rkY, > r. This completes the entire 
proof of Lemma 3.1. Q.E.D. 

PROOFOF THEOREM3.3: The results follow by the continuous mapping theorem. Q.E.D. 
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<ROOF OF COROLLARY = - be the ith element 3.6: Let i[,,][ m h ] ~ i ' / ~ (  i m )and i,,[,,]brmA1 
of ZrmA1 .It follows that 

~{i,,,l - -m ) ] ] ' / 2 ,for all n r m and all i )< m l / ' ( n  - m / m ) [ ( n / n  m ) [ a 2+ In(n/n 

for some n 2 m 11k ,  

But 

lim ~ { l i ~ , , l 2m l / ' ( n  -m / m ) [ ( n / n  -m ) [ a 2+ In(n /n  -m ) ] ]  1/2 
m / ' m  

for some A r 1)  = 2 [ 1 -  @ ( a )  +a 4 ( a ) l ,  

from (13).The above conclusion remains valid if we replace Dm with its consistent estimator. Q.E.D. 

PROOFOF THEOREM3.7: Let A > > 1. 

where b1,[,,] is the estimate from observation 1 to [ m r ]  and from observation ~ [ m , l + l , [ m A l  
[ m r ]+ 1 to [ m h ] .It follows that ( PrmA1- bm)+ (1  - (r/A))6, where 6 = ( Pl  - Po),and that 

1 , 
= 

[ m  A1 im)lim sup -zImA1lim sup - D L ' / ~ ( ~ [ , ~ ]  -
m-rn A m m - m  * m 

diverges. On the other hand, m- ' / ' ( n  -m / m ) [ ( n / n-m)[a2+ ln(n /n  -m)]]1 /2+0, and the 
theorem follows. Q.E.D. 
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